Operations and Algebraic Thinking

Represent and solve problems involving multiplication and division.

Multiply and divide within 100.

3.OA.7—Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div by 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.

Solve problems involving the four operations, and identify and explain patterns in arithmetic.

3.OA.8—Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

Numbers and Operations in Base Ten

Use place value understanding and properties of operations to perform multi-digit arithmetic.

3.NBT.2 – Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Numbers and Operations—Fractions

Develop understanding of fractions as numbers.

3.NF.1—Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into *b* equal parts; understand a fraction a/b as the quantity formed by *a* parts of size 1/b.

3.NF.3—Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

- a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on the number line.
- b. Recognize and generate simple equivalent fractions, e.g., $\frac{1}{2} = \frac{2}{4}$, $\frac{4}{6} = \frac{2}{3}$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
- c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.
- d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Measurement and Data

Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. 3.MD.1—Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.

3.MD.2—Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.

Represent and interpret data.

3.MD.3—Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. *For example, draw a bar graph in which each square in the bar graph might represent 5 pets.*

Geometric Measurement: understand concepts of area and relate area to multiplication and to addition.

3.MD.7—Relate area to the operations of multiplication and addition.

- a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
- b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
- c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the sum of a x b and a x c. Use area models to represent the distributive property in mathematical reasoning
- d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

Geometry

Reason with shapes and their attributes.

3.G.1 – Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.

